Acesta este doar un demo, progresul nu este salvat.
Descriere | Formula |
---|---|
Definiția derivatei | $\lim_{x \to x_0} \frac{f(x)-f(x_0)}{x-x_0} = f'(x_0)$ |
Derivate laterale | $f'_s(x_0) = f'_d(x_0) = f'(x_0)$ |
Derivata sumei | $(f + g)' = f' + g'$ |
Derivata produsului cu scalar | $(\lambda f)' = \lambda f'$ |
Derivata produsului | $(f \cdot g)' = f' \cdot g + f \cdot g'$ |
Derivata câtului | $\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$ |
Derivata funcției compuse | $(f \circ u)' = (f' \circ u) \cdot u'$ |
Derivata funcției inverse | $(f^{-1})' = \frac{1}{f' \circ f^{-1}}$ |
Explorați concepte fundamentale ale analizei matematice legate de funcții derivabile, inclusiv definiții, teoreme importante și reguli de derivare pentru diverse tipuri de funcții.
Cunoștințe și întrebări esențiale despre “Funcții Derivabile”