Inapoi la toate memoratoarele

Memorator Online
Numere Raționale
Gratuit

Flashcarduri pentru concepte de bază ale numerelor raționale, potrivite pentru elevi de liceu

Ești curios să vezi cum arată flashcard-urile din acest memorator?

Acesta este doar un demo, progresul nu este salvat.

Acest memorator te va ajuta sa reții următoarele 15 formule:

DescriereFormula
Definiția fracției$\frac{a}{b}$, unde $a, b \in \mathbb{N}$, $b \neq 0$
Simplificarea fracțiilor$\frac{a}{b} = \frac{a:d}{b:d}$, unde $d|a$ și $d|b$, $d \neq 0$
Amplificarea fracțiilor$\frac{a}{b} = \frac{a \cdot c}{b \cdot c}$, unde $c \neq 0$
Mulțimea numerelor raționale$Q = \{\frac{m}{n} | m \in \mathbb{Z}, n \in \mathbb{N}^*\}$
Elementul neutru al adunării$\frac{a}{b} + 0 = 0 + \frac{a}{b} = \frac{a}{b}$
Scoaterea întregilor dintr-o fracție$\frac{D}{I} = C + \frac{R}{I}$
Introducerea întregilor în fracție$a\frac{b}{c} = \frac{a \cdot c + b}{c}$
Scăderea fracțiilor cu același numitor$\frac{a}{n} - \frac{b}{n} = \frac{a-b}{n}$
Scăderea fracțiilor cu numitori diferiți$\frac{a}{b} - \frac{c}{d} = \frac{a \cdot d - b \cdot c}{b \cdot d}$
Înmulțirea unui număr natural cu o fracție$a \cdot \frac{b}{c} = \frac{a \cdot b}{c}$
Înmulțirea fracțiilor$\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}$
Împărțirea fracțiilor$\frac{a}{b} : \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} = \frac{a \cdot d}{b \cdot c}$
Puterea unei fracții$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$
Produsul de puteri cu aceeași bază$\left(\frac{a}{b}\right)^m \cdot \left(\frac{a}{b}\right)^n = \left(\frac{a}{b}\right)^{m+n}$
Puterea la putere$\left[\left(\frac{a}{b}\right)^m\right]^n = \left(\frac{a}{b}\right)^{m \cdot n}$

Cunoștințe și întrebări esențiale despre “Numere Raționale