Explorează definiții importante legate de analiza vectorială
Definiția inegalității Cauchy-Buniakovsky-Schwarz
Ce afirmă inegalitatea Cauchy-Buniakovsky-Schwarz?
Inegalitatea Cauchy-Buniakovsky-Schwarz stabilește că pentru orice seturi de numere reale $a_1, a_2, ..., a_n$ și $b_1, b_2, ..., b_n$:
$\left( \sum_{i=1}^{n} a_i b_i \right)^2 \leq \left( \sum_{i=1}^{n} a_i^2 \right) \cdot \left( \sum_{i=1}^{n} b_i^2 \right)$
Aceasta este folosită în geometrie, analiză vectorială și pentru demonstrarea altor inegalități.
Alătură-te celor care rețin mai multe definiții și sunt mai buni la matematică.
Memoratoarele sunt colecții de flashcard-uri, care conțin formulele de mai sus + concepte esențiale. Cu ajutorul acest memoratoare poți să înveți mai repede ceea ce trebuie să știi pentru teste și examene.