Înapoi la toate definițiile

1 Definiții pentru axiomele probabilității disponibile

Explorează definiții importante legate de axiomele probabilității

Axiomele probabilității pentru definirea unei funcții de probabilitate

Care sunt condițiile pentru ca o funcție $P: \\mathcal{P}(U) \\to \\mathbb{R}$ să fie o probabilitate?
O funcție $P: \mathcal{P}(U) \to \mathbb{R}$ este o probabilitate dacă îndeplinește:
1) $0 \leq P(A) \leq 1$
2) $P(\emptyset) = 0, P(S) = 1$
3) $A \subset B \Rightarrow P(A) \leq P(B)$
4) $A \cap B = \emptyset \Rightarrow P(A \cup B) = P(A) + P(B)$
Aceste axiome definesc fundamentul matematic al teoriei probabilităților.

Începe să reții definițiile și conceptele avansate mult mai repede

Alătură-te celor care rețin mai multe definiții și sunt mai buni la matematică.

1 Memorator disponibil care te poate ajuta să înveți mai repede

Memoratoarele sunt colecții de flashcard-uri, care conțin formulele de mai sus + concepte esențiale. Cu ajutorul acest memoratoare poți să înveți mai repede ceea ce trebuie să știi pentru teste și examene.

Gratuit
Acest pachet conține flashcarduri despre concepte fundamentale de statistică și probabilitate.
28 flashcard-uri în pachet
~9 minute de studiu