Înapoi la toate formulele

Asimptotă oblică

Cum se determină o asimptotă oblică a unei funcții?

O asimptotă oblică y = mx + n a unei funcții f se determină când $\lim_{x \to \pm\infty} [f(x) - (mx + n)] = 0$, unde m = $\lim_{x \to \pm\infty} f(x)/x$ și n = $\lim_{x \to \pm\infty} [f(x) - mx]$. Graficul funcției se apropie asimptotic de această dreaptă pentru valori foarte mari ale lui |x|.

Începe să reții formulele și conceptele avansate mult mai repede

Alătură-te celor care rețin mai multe formule și sunt mai buni la matematică.