Înapoi la toate formulele

Care este enunțul teoremei lui Ceva pentru ceviene concurente într-un triunghi?

Teorema lui Ceva afirmă că trei ceviene AA', BB', CC' sunt concurente în triunghiul ABC dacă și numai dacă $\frac{BA'}{A'C} \cdot \frac{CB'}{B'A} \cdot \frac{AC'}{C'B} = 1$. Această relație oferă o condiție algebrică pentru concurența cevienelor.

Începe să reții formulele și conceptele avansate mult mai repede

Alătură-te celor care rețin mai multe formule și sunt mai buni la matematică.