Cum se calculează vectorul de poziție al punctului de concurență a trei ceviene într-un triunghi?
Pentru punctul M de concurență a cevienelor AA', BB', CC' în triunghiul ABC, vectorul de poziție este $\vec{r}_M = \frac{k_1\vec{r}_A + k_2\vec{r}_B + k_3\vec{r}_C}{k_1 + k_2 + k_3}$, unde k1, k2, k3 sunt rapoartele de împărțire ale cevienelor.
Care este enunțul teoremei lui Ceva pentru ceviene concurente într-un triunghi?
Teorema lui Ceva afirmă că trei ceviene AA', BB', CC' sunt concurente în triunghiul ABC dacă și numai dacă $\frac{BA'}{A'C} \cdot \frac{CB'}{B'A} \cdot \frac{AC'}{C'B} = 1$. Această relație oferă o condiție algebrică pentru concurența cevienelor.
Cum se exprimă teorema bisectoarei folosind vectori?
Teorema bisectoarei afirmă că pentru bisectoarea AD în triunghiul ABC, avem relația $\overrightarrow{AD}(b+c) = b\overrightarrow{AB} + c\overrightarrow{AC}$, unde b și c sunt lungimile laturilor AC și AB. Aceasta leagă vectorii și lungimile laturilor în triunghi.
Care este prima relație a lui Sylvester pentru triunghiuri?
Prima relație a lui Sylvester afirmă că $\overrightarrow{HA} + \overrightarrow{HB} + \overrightarrow{HC} = 2\overrightarrow{HO}$, unde H este ortocentrul și O este centrul cercului circumscris triunghiului ABC. Aceasta leagă punctele notabile ale triunghiului.
Care este a doua relație a lui Sylvester pentru triunghiuri?
A doua relație a lui Sylvester afirmă că $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{OH}$, unde O este centrul cercului circumscris și H este ortocentrul triunghiului ABC. Aceasta completează prima relație, oferind o perspectivă vectorială asupra geometriei triunghiului.
Care este condiția matematică pentru ca doi vectori să fie paraleli?
Doi vectori $\vec{u}(a, b)$ și $\vec{v}(c, d)$ sunt paraleli dacă și numai dacă $\frac{a}{c} = \frac{b}{d}$, cu $c \neq 0$ și $d \neq 0$. Această condiție exprimă proporționalitatea componentelor vectorilor paraleli.
Cum se calculează lungimea (norma) unui vector în plan?
Lungimea (norma) unui vector $\vec{u} = a\vec{i} + b\vec{j}$ în plan se calculează ca $\|\vec{u}\| = \sqrt{a^2 + b^2}$. Această formulă derivă din teorema lui Pitagora și este fundamentală în geometria analitică plană.
Cum se calculează lungimea (norma) unui vector în spațiu tridimensional?
Lungimea (norma) unui vector $\vec{v} = x\vec{i} + y\vec{j} + z\vec{k}$ în spațiu se calculează ca $\|\vec{v}\| = \sqrt{x^2 + y^2 + z^2}$. Aceasta este o extensie tridimensională a teoremei lui Pitagora.
Cum se calculează produsul scalar a doi vectori în spațiu tridimensional?
Produsul scalar a doi vectori $\vec{v_1}(x_1, y_1, z_1)$ și $\vec{v_2}(x_2, y_2, z_2)$ în spațiu se calculează ca $\vec{v_1} \cdot \vec{v_2} = x_1x_2 + y_1y_2 + z_1z_2$. Această formulă extinde expresia analitică a produsului scalar din plan în spațiul tridimensional.