Cum se notează un vector legat în matematică?
Un vector legat se notează ca $\overrightarrow{AB}$, unde A este originea și B este extremitatea vectorului. Această notație indică direcția, sensul și mărimea vectorului, fiind esențială în geometria vectorială.
Care sunt notațiile pentru lungimea unui vector legat?
Lungimea unui vector legat $\overrightarrow{AB}$ se poate nota în mai multe moduri echivalente: $|\overrightarrow{AB}| = \|\overrightarrow{AB}\| = d(A, B) = AB$. Acestea reprezintă distanța dintre punctele A și B, fiind esențiale în calculele vectoriale.
Cum se exprimă matematic raportul în care un punct împarte un segment orientat?
Raportul în care punctul M împarte segmentul orientat $\overrightarrow{AB}$ se exprimă prin formula $\overrightarrow{MA} = k \cdot \overrightarrow{MB}$, unde k este raportul de împărțire. Această relație este fundamentală în studiul segmentelor orientate și al vectorilor.
Care este formula pentru poziția unui punct care împarte un segment orientat într-un raport dat?
Poziția punctului M care împarte segmentul orientat $\overrightarrow{AB}$ în raportul k se exprimă prin formula: $\overrightarrow{OM} = \frac{1}{1-k}\overrightarrow{OA} + \frac{k}{1-k}\overrightarrow{OB}$. Această teoremă este esențială în geometria vectorială pentru determinarea poziției punctelor pe segmente.
Cum se calculează vectorul de poziție al punctului de concurență a trei ceviene într-un triunghi?
Pentru punctul M de concurență a cevienelor AA', BB', CC' în triunghiul ABC, vectorul de poziție este $\vec{r}_M = \frac{k_1\vec{r}_A + k_2\vec{r}_B + k_3\vec{r}_C}{k_1 + k_2 + k_3}$, unde k1, k2, k3 sunt rapoartele de împărțire ale cevienelor.
Care este enunțul teoremei lui Ceva pentru ceviene concurente într-un triunghi?
Teorema lui Ceva afirmă că trei ceviene AA', BB', CC' sunt concurente în triunghiul ABC dacă și numai dacă $\frac{BA'}{A'C} \cdot \frac{CB'}{B'A} \cdot \frac{AC'}{C'B} = 1$. Această relație oferă o condiție algebrică pentru concurența cevienelor.
Cum se exprimă teorema bisectoarei folosind vectori?
Teorema bisectoarei afirmă că pentru bisectoarea AD în triunghiul ABC, avem relația $\overrightarrow{AD}(b+c) = b\overrightarrow{AB} + c\overrightarrow{AC}$, unde b și c sunt lungimile laturilor AC și AB. Aceasta leagă vectorii și lungimile laturilor în triunghi.
Care este prima relație a lui Sylvester pentru triunghiuri?
Prima relație a lui Sylvester afirmă că $\overrightarrow{HA} + \overrightarrow{HB} + \overrightarrow{HC} = 2\overrightarrow{HO}$, unde H este ortocentrul și O este centrul cercului circumscris triunghiului ABC. Aceasta leagă punctele notabile ale triunghiului.
Care este a doua relație a lui Sylvester pentru triunghiuri?
A doua relație a lui Sylvester afirmă că $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{OH}$, unde O este centrul cercului circumscris și H este ortocentrul triunghiului ABC. Aceasta completează prima relație, oferind o perspectivă vectorială asupra geometriei triunghiului.
Care este condiția matematică pentru ca doi vectori să fie paraleli?
Doi vectori $\vec{u}(a, b)$ și $\vec{v}(c, d)$ sunt paraleli dacă și numai dacă $\frac{a}{c} = \frac{b}{d}$, cu $c \neq 0$ și $d \neq 0$. Această condiție exprimă proporționalitatea componentelor vectorilor paraleli.
Cum se calculează lungimea (norma) unui vector în plan?
Lungimea (norma) unui vector $\vec{u} = a\vec{i} + b\vec{j}$ în plan se calculează ca $\|\vec{u}\| = \sqrt{a^2 + b^2}$. Această formulă derivă din teorema lui Pitagora și este fundamentală în geometria analitică plană.
Cum se calculează lungimea (norma) unui vector în spațiu tridimensional?
Lungimea (norma) unui vector $\vec{v} = x\vec{i} + y\vec{j} + z\vec{k}$ în spațiu se calculează ca $\|\vec{v}\| = \sqrt{x^2 + y^2 + z^2}$. Aceasta este o extensie tridimensională a teoremei lui Pitagora.
Cum se calculează produsul scalar a doi vectori în spațiu tridimensional?
Produsul scalar a doi vectori $\vec{v_1}(x_1, y_1, z_1)$ și $\vec{v_2}(x_2, y_2, z_2)$ în spațiu se calculează ca $\vec{v_1} \cdot \vec{v_2} = x_1x_2 + y_1y_2 + z_1z_2$. Această formulă extinde expresia analitică a produsului scalar din plan în spațiul tridimensional.
Cum se calculează produsul scalar a doi vectori folosind coordonatele lor?
Produsul scalar a doi vectori $\vec{u} = x_u\vec{i} + y_u\vec{j}$ și $\vec{v} = x_v\vec{i} + y_v\vec{j}$ se calculează folosind formula: $\vec{u} \cdot \vec{v} = x_ux_v + y_uy_v$. Această formulă reprezintă forma algebrică a produsului scalar.
Cum se calculează produsul scalar a doi vectori folosind mărimea lor și unghiul dintre ei?
Produsul scalar a doi vectori $\vec{u}$ și $\vec{v}$ se poate calcula și folosind formula: $\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos(\sphericalangle(\vec{u},\vec{v}))$, unde $|\vec{u}|$ și $|\vec{v}|$ sunt mărimile vectorilor, iar $\sphericalangle(\vec{u},\vec{v})$ este unghiul dintre ei.
Care este condiția de perpendicularitate pentru doi vectori?
Doi vectori $\vec{u} = x_u\vec{i} + y_u\vec{j}$ și $\vec{v} = x_v\vec{i} + y_v\vec{j}$ sunt perpendiculari dacă și numai dacă $x_ux_v + y_uy_v = 0$. Această condiție este echivalentă cu faptul că produsul lor scalar este zero.
Care este condiția de paralelism pentru doi vectori?
Doi vectori $\vec{u} = x_u\vec{i} + y_u\vec{j}$ și $\vec{v} = x_v\vec{i} + y_v\vec{j}$ sunt paraleli dacă și numai dacă $\frac{x_u}{x_v} = \frac{y_u}{y_v}$. Această condiție înseamnă că vectorii au aceeași direcție.