Care este primitiva funcției $x^n$?
Primitiva funcției $x^n$ este $\int x^n dx = \frac{x^{n+1}}{n+1} + C, \forall x \in \mathbb{R}, n \in \mathbb{N}^*$
Care este primitiva funcției $x^a$?
Primitiva funcției $x^a$ este $\int x^a dx = \frac{x^{a+1}}{a+1} + C, \forall x \in I \subset (0, +\infty), a \in \mathbb{R} \setminus \{-1\}$
Care este primitiva funcției exponențiale $a^x$?
Primitiva funcției exponențiale $a^x$ este $\int a^x dx = \frac{a^x}{\ln a} + C, \forall x \in \mathbb{R}, a \neq 1$
Care este primitiva funcției $\frac{1}{x}$?
Primitiva funcției $\frac{1}{x}$ este $\int \frac{1}{x} dx = \ln |x| + C, \forall x \in I, I \subset (-\infty, 0)$ sau $I \subset (0, +\infty)$
Care este primitiva funcției $\frac{1}{x^2-a^2}$?
Primitiva funcției $\frac{1}{x^2-a^2}$ este $\int \frac{1}{x^2-a^2} dx = \frac{1}{2a} \ln |\frac{x-a}{x+a}| + C, \forall x \in I, I \subset (-\infty, -a)$ sau $I \subset (-a, a)$ sau $I \subset (a, +\infty), a \in \mathbb{R}^*$.
Care este primitiva funcției $\frac{1}{x^2+a^2}$?
Primitiva funcției $\frac{1}{x^2+a^2}$ este $\int \frac{1}{x^2+a^2} dx = \frac{1}{a} \arctg \frac{x}{a} + C, \forall x \in \mathbb{R}, a \in \mathbb{R}^*$.
Care este primitiva funcției $\sin x$?
Primitiva funcției $\sin x$ este $\int \sin x dx = -\cos x + C, \forall x \in \mathbb{R}$
Care este primitiva funcției $\cos x$?
Primitiva funcției $\cos x$ este $\int \cos x dx = \sin x + C, \forall x \in \mathbb{R}$
Care este primitiva funcției $\frac{1}{\cos^2 x}$?
Primitiva funcției $\frac{1}{\cos^2 x}$ este $\int \frac{1}{\cos^2 x} dx = \tg x + C, \forall x \in I \subset ((2k+1)\frac{\pi}{2}, (2k+3)\frac{\pi}{2}), k \in \mathbb{Z}$ (cos x ≠ 0)
Care este primitiva funcției $\frac{1}{\sin^2 x}$?
Primitiva funcției $\frac{1}{\sin^2 x}$ este $\int \frac{1}{\sin^2 x} dx = -\ctg x + C, \forall x \in I \subset (k\pi, (k+1)\pi), k \in \mathbb{Z}$ (sin x ≠ 0)
Care este primitiva funcției $\tg x$?
Primitiva funcției $\tg x$ este $\int \tg x dx = -\ln|\cos x| + C, \forall x \in I \subset ((2k+1)\frac{\pi}{2}, (2k+3)\frac{\pi}{2}), k \in \mathbb{Z}$ (cos x ≠ 0)
Care este primitiva funcției $\ctg x$?
Primitiva funcției $\ctg x$ este $\int \ctg x dx = \ln|\sin x| + C, \forall x \in \mathbb{R} \setminus \{k\pi | k \in \mathbb{Z}\}$ (sin x ≠ 0)
Care este primitiva funcției $\\frac{1}{\\sqrt{x^2+a^2}}$?
Primitiva funcției $\frac{1}{\sqrt{x^2+a^2}}$ este $\int \frac{1}{\sqrt{x^2+a^2}} dx = \ln|x + \sqrt{x^2+a^2}| + C, \forall x \in \mathbb{R}, a > 0$
Care este primitiva funcției $\frac{1}{\sqrt{x^2-a^2}}$?
Primitiva funcției $\frac{1}{\sqrt{x^2-a^2}}$ este $\int \frac{1}{\sqrt{x^2-a^2}} dx = \ln|x + \sqrt{x^2-a^2}| + C, \forall x \in I, I \subset (-\infty, -a)$ sau $I \subset (a, +\infty), a > 0$
Care este primitiva funcției $\frac{1}{\sqrt{a^2-x^2}}$?
Primitiva funcției $\frac{1}{\sqrt{a^2-x^2}}$ este $\int \frac{1}{\sqrt{a^2-x^2}} dx = \arcsin \frac{x}{a} + C, \forall x \in I, I \subset (-a, a), a > 0$
Care este primitiva funcției $\sqrt{a^2-x^2}$?
Primitiva funcției $\sqrt{a^2-x^2}$ este $\int \sqrt{a^2-x^2} dx = \frac{x}{2}\sqrt{a^2-x^2} + \frac{a^2}{2} \arcsin \frac{x}{a} + C, \forall x \in I, I \subset (-a, a), a > 0$
Care este primitiva funcției $\sqrt{x^2+a^2}$?
Primitiva funcției $\sqrt{x^2+a^2}$ este $\int \sqrt{x^2+a^2} dx = \frac{x}{2}\sqrt{x^2+a^2} + \frac{a^2}{2} \ln|x + \sqrt{x^2+a^2}| + C, \forall x \in \mathbb{R}, a \in \mathbb{R}^*$
Care este primitiva funcției $\sqrt{x^2-a^2}$?
Primitiva funcției $\sqrt{x^2-a^2}$ este $\int \sqrt{x^2-a^2} dx = \frac{x}{2}\sqrt{x^2-a^2} - \frac{a^2}{2} \ln|x + \sqrt{x^2-a^2}| + C, \forall x \in I, I \subset (-\infty, -a)$ sau $I \subset (a, +\infty), a > 0$
Cum se definește o primitivă a unei funcții?
O funcție $F: I \to \mathbb{R}$ este o primitivă a funcției $f: I \to \mathbb{R}$ dacă $F$ este derivabilă pe $I$ și $F'(x) = f(x), \forall x \in I$.
Aceasta stabilește relația inversă între derivare și primitivizare.