45 Formule de trigonometrie disponibile
Explorează cele mai importante formule legate de trigonometrie
Tabel formule de trigonometrie:
Descriere | Formula |
---|---|
Relația fundamentală trigonometrică | $\sin^2 x + \cos^2 x = 1$ |
Funcții trigonometrice complementare (sinus) | $\sin(\frac{\pi}{2} - x) = \cos x$ |
Sinus unghi dublu | $\sin 2x = 2 \sin x \cos x$ |
Cosinus unghi dublu | $\cos 2x = \cos^2 x - \sin^2 x = 2\cos^2 x - 1 = 1 - 2\sin^2 x$ |
Tangenta unghi dublu | $\tg 2x = \frac{2 \tg x}{1 - \tg^2 x}$ |
Sinus la pătrat în funcție de cosinus dublu | $\sin^2 x = \frac{1 - \cos 2x}{2}$ |
Cosinus la pătrat în funcție de cosinus dublu | $\cos^2 x = \frac{1 + \cos 2x}{2}$ |
Sinus unghi triplu | $\sin 3x = 4\sin^3 x - 3\sin x$ |
Cosinus unghi triplu | $\cos 3x = 4\cos^3 x - 3\cos x$ |
Sinus suma unghiurilor | $\sin(a + b) = \sin a \cos b + \cos a \sin b$ |
Cosinus suma unghiurilor | $\cos(a + b) = \cos a \cos b - \sin a \sin b$ |
Sinus diferența unghiurilor | $\sin(a - b) = \sin a \cos b - \cos a \sin b$ |
Cosinus diferența unghiurilor | $\cos(a - b) = \cos a \cos b + \sin a \sin b$ |
Tangenta sumei și diferenței unghiurilor | $\tg(a \pm b) = \frac{\tg a \pm \tg b}{1 \mp \tg a \cdot \tg b}$ |
Tangenta jumătății unghiului | $\tg \frac{a}{2} = \frac{1 - \cos a}{\sin a}$ |
Valoarea absolută a cosinusului jumătății unghiului | $\left|\cos \frac{a}{2}\right| = \sqrt{\frac{1 + \cos a}{2}}$ |
Valoarea absolută a sinusului jumătății unghiului | $\left|\sin \frac{a}{2}\right| = \sqrt{\frac{1 - \cos a}{2}}$ |
Produsul sinus-cosinus în sumă | $\sin a \cdot \cos b = \frac{1}{2}[\sin(a+b) + \sin(a-b)]$ |
Produsul cosinus-cosinus în sumă | $\cos a \cdot \cos b = \frac{1}{2}[\cos(a+b) + \cos(a-b)]$ |
Produsul sinus-sinus în diferență de cosinusuri | $\sin a \cdot \sin b = -\frac{1}{2}[\cos(a+b) - \cos(a-b)]$ |
Suma cosinusurilor unghiurilor în produs | $\cos a + \cos b = 2\cos \frac{a+b}{2} \cos \frac{a-b}{2}$ |
Diferența cosinusurilor în produs | $\cos a - \cos b = -2\sin \frac{a+b}{2} \sin \frac{a-b}{2}$ |
Suma sinusurilor în produs | $\sin a + \sin b = 2\sin \frac{a+b}{2} \cos \frac{a-b}{2}$ |
Diferența sinusurilor în produs | $\sin a - \sin b = 2\sin \frac{a-b}{2} \cos \frac{a+b}{2}$ |
Suma tangentelor | $\tg a + \tg b = \frac{\sin(a+b)}{\cos a \cos b}$ |
Diferența tangentelor | $\tg a - \tg b = \frac{\sin(a-b)}{\cos a \cos b}$ |
Formula de substituție universală pentru sinus | $\sin a = \frac{2\tg \frac{a}{2}}{1 + \tg^2 \frac{a}{2}}$ |
Formula de substituție universală pentru cosinus | $\cos a = \frac{1 - \tg^2 \frac{a}{2}}{1 + \tg^2 \frac{a}{2}}$ |
Formula de substituție universală pentru tangentă | $\tg a = \frac{2\tg \frac{a}{2}}{1 - \tg^2 \frac{a}{2}}$ |
Forma trigonometrică a numărului complex | $z = r(\cos \varphi + i \sin \varphi)$ |
Înmulțirea numerelor complexe în formă trigonometrică | $z_1 \cdot z_2 = r_1r_2[\cos (\varphi_1 + \varphi_2) + i \sin (\varphi_1 + \varphi_2)]$ |
Formula lui Moivre | $z_1^n = r_1^n(\cos n\varphi_1 + i \sin n\varphi_1)$ |
Limita $\frac{\sin x}{x}$ | $\lim_{x \to 0} \frac{\sin x}{x} = 1$ |
Limita $\frac{\tg x}{x}$ | $\lim_{x \to 0} \frac{\tg x}{x} = 1$ |
Derivata funcției compuse sinus | $(\sin u)' = \cos u \cdot u'$ |
Derivata funcției compuse cosinus | $(\cos u)' = -\sin u \cdot u'$ |
Derivata funcției compuse tangentă | $(\tg u)' = \frac{1}{\cos^2 u} \cdot u'$ |
Derivata funcției compuse cotangentă | $(\ctg u)' = -\frac{1}{\sin^2 u} \cdot u'$ |
Derivata funcției compuse arcsinus | $(\arcsin u)' = \frac{1}{\sqrt{1-u^2}} \cdot u'$ |
Derivata funcției compuse arccosinus | $(\arccos u)' = -\frac{1}{\sqrt{1-u^2}} \cdot u'$ |
Derivata funcției compuse arctangentă | $(\arctg u)' = \frac{1}{1+u^2} \cdot u'$ |
Derivata funcției compuse arccotangentă | $(\arcctg u)' = -\frac{1}{1+u^2} \cdot u'$ |
Derivata funcției sinus hiperbolic | $(\sh u)' = \ch u \cdot u'$ |
Derivata funcției cosinus hiperbolic | $(\ch u)' = \sh u \cdot u'$ |
Rădăcina pătrată a lui 3 | $\sqrt{3} \approx 1,73205$ |
Formule preluate de pe memoratoronline.ro
Vezi mai multe formule:
Formule de trigonometrie adăugate recent:
Relația fundamentală trigonometrică
$\sin^2 x + \cos^2 x = 1$
Funcții trigonometrice complementare (sinus)
$\sin(\frac{\pi}{2} - x) = \cos x$
Sinus unghi dublu
$\sin 2x = 2 \sin x \cos x$
Începe să reții formulele și conceptele avansate mult mai repede
Alătură-te celor care rețin mai multe formule și sunt mai buni la matematică.